
Right Place, Right Time: Spatiotemporal Predictions Guide Attention in
Dynamic Visual Search

Sage E. P. Boettcher1, 2, Nir Shalev1, 2, Jeremy M. Wolfe3, 4, and Anna C. Nobre1, 2
1 Department of Experimental Psychology, University of Oxford

2 Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of
Oxford

3 Visual Attention Laboratory, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, United States
4 Harvard Medical School

Visual search is a fundamental element of human behavior and is predominantly studied in a laboratory
setting using static displays. However, real-life search is often an extended process taking place in
dynamic environments. We have designed a dynamic-search task in order to incorporate the temporal
dimension into visual search. Using this task, we tested how participants learn and utilize spatiotemporal
regularities embedded within the environment to guide performance. Participants searched for eight
instances of a target that faded in and out of a display containing similarly transient distractors. In each
trial, four of the eight targets appeared in a temporally predictable fashion with one target appearing in
each of four spatially separated quadrants. The other four targets were spatially and temporally unpre-
dictable. Participants’ performance was significantly better for spatiotemporally predictable compared to
unpredictable targets (Experiments 1–4). The effects were reliable over different patterns of spatiotem-
poral predictability (Experiment 2) and primarily reflected long-term learning over trials (Experiments
3, 4), although single-trial priming effects also contributed (Experiment 4). Eye-movement recordings
(Experiment 1) revealed that spatiotemporal regularities guide attention proactively and dynamically.
Taken together, our results show that regularities across both space and time can guide visual search
and this guidance can primarily be attributed to robust long-term representations of these regularities.
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Our environment is filled with regularities that can guide our
perception and facilitate performance (Nobre & van Ede, 2018;
Võ et al., 2019). As we prepare an afternoon cup of tea, our prior
experience allows us to orient attention to the kettle the moment
before it whistles and then to a spoon stored away in the top
drawer. Such attentional guidance is particularly beneficial when
multiple signals compete for our attention; for instance, if the ket-
tle is placed in a messy kitchen and loud music is preventing us
from hearing it. In cognitive research, a popular choice for study-
ing attention in the context of competition and distraction is the
visual search task (Treisman & Gelade, 1980; Wolfe, 2020, 2021).
In such tasks, observers search for a target among distractors in a
visual display. There is mounting evidence that regularities learned
over various timescales significantly benefit performance and that
performance in search tasks drastically improves when regularities
learned from varying time scales can be exploited (Awh et al.,
2012; Chun & Jiang, 1998, 2003; Jiang et al., 2005; Kristjánsson
& Campana, 2010; Maljkovic & Nakayama, 1994; Nobre &
Stokes, 2019).

It is now relatively established that various task properties can
influence where or what people attend over short time scales. A
clear example comes in the form of “repetition priming” whereby
performance is facilitated when target items share features
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(Campana et al., 2008; Kristjánsson, 2006; Maljkovic &
Nakayama, 1994; Meeter & Olivers, 2006) or locations (Maljkovic
& Nakayama, 1996; for review see Kristjánsson & Campana,
2010) with items that were recently selected. For example, Malj-
kovic and Nakayama (1996) showed facilitation when the target
position was repeated from the previous trial and inhibition when
the target appeared in the same location as a distractor. Studies
that specifically compared the benefits of explicit cues and repeti-
tion priming found that these effects differed in their magnitude
and duration suggesting different underlying mechanisms between
the two processes (Maljkovic & Nakayama, 2000). As such, pri-
ming is generally considered to be a product of an implicit short-
term memory (STM) system (Becker, 2008; Kristjánsson & Cam-
pana, 2010; Maljkovic & Nakayama, 2000; Schacter & Buckner,
1998; Sigurdardottir et al., 2008).
Learning over longer time scales (i.e., beyond a single-trial rep-

etition) also contributes to the allocation of attention. For example,
in probability-cuing tasks observers search for a target in an envi-
ronment with high-probability target locations, and low-probabil-
ity target locations. Observers are faster at finding targets that
occur in the high-probability locations (Geng & Behrmann, 2002,
2005; Jiang, 2018; Jiang, Swallow, Rosenbaum & Herzig, 2013;
Shaw & Shaw, 1977). This effect cannot be explained by repeti-
tion priming alone (Goschy et al., 2014; Jiang, Swallow, & Rose-
nbaum, 2013; Jones & Kaschak, 2012). Contextual cuing benefits
in visual search task also clearly suggest the impact of longer-term
memories in guiding attention. In contextual cuing tasks, perform-
ance benefits result when a target appears at the same location
within a given configuration of distractors that reoccurs (Chun &
Jiang, 1998). The effects are independent of the immediate repeti-
tion of target locations between successive trials and have even
been shown after a delay of 1 week (Chun & Jiang, 2003).
Taken together, the facilitation of performance based on short-

and long-term representations in visual search has been concep-
tualized within statistical-learning and selection-history frame-
works (Awh et al., 2012; Theeuwes, 2019). The central idea is that
previous attentional deployments can have lasting biasing effects
that are independent of task goals or physical salience. These
effects are typically fast acting, automatic, flexible, and have been
shown not to depend on the participants’ awareness of the environ-
mental regularities (Chun & Jiang, 1998, 1999; Goujon et al.,
2015). Furthermore, studies investigating visual search within nat-
ural scenes also reveal the contribution of semantic and grammati-
cal (structural) associations as additional long-term memory
sources of attentional guidance (e.g., kettles are usually found on
kitchen counters, not bathroom floors), (Võ et al., 2019; Wolfe et
al., 2011). Such theoretical notions and findings fit within the
broader proposal that the contents of memories of different types
and timescales guide perception by influencing the deployment of
attention (Nobre & Stokes, 2019).
Visual search studies have provided some of the cornerstones to

our understanding of how attention is controlled and guided. To
date, most studies only investigate search within discrete percep-
tual events, such as a briefly presented static display or scene.
However, search in the real world occurs within an unfolding tem-
poral context. For example, if you are searching for a friend at a
crowded train station. Searching for target items among dynamic
sets of distractors in unfolding temporal contexts introduces addi-
tional challenges in terms of sustaining optimal performance and

learning about useful regularities. Regularities between items often
occur across temporal intervals that are filled with distraction. To
be effective, therefore, spatial or identity-related predictions
should also carry temporal information (e.g., when your friend is
likely to arrive). Furthermore, extracting regularities about the tim-
ing of relevant events occurring among distracting stimuli requires
more than learning about simple associations about the order or
the temporal interval between individual events. Instead, the tim-
ing of target items must be abstracted across the entire duration of
irrelevant distracting events if it is to aid search based on item
identity or location.

Thus, investigating the guidance of attention within temporally
extended contexts provides an important next step toward our
understanding of the mechanisms contributing to real-life visual
search. A few different experimental approaches have started to
examine the temporal dimension within visual search. For exam-
ple, researchers have shown that a regularly occurring sequence of
events can attract attention automatically without the need of prior
experiences (Zhao et al., 2013). Moreover, recent work has also
demonstrated that people can use a continuous change of features
(e.g., gradual change of color or change of number) within a
dynamic task to anticipate when a stimulus becomes response rele-
vant (Muhl-Richardson, Cornes, et al., 2018; Muhl-Richardson,
Godwin, et al., 2018). Li and Theeuwes (2020) demonstrated that
observers anticipate targets based on regular patterns of target
sequences (e.g., they can learn that the selection of a target at one
location the visual field is likely to be followed by a target at
another location). These studies establish that predictions based on
sequential associations between successive stimuli (or gradual
modulations of stimuli features) can be learned and utilized to
improve performance.

Other studies have suggested that learned associations about the
temporal interval between events, and not merely their temporal
order, can also be used to improve search performance. Building
on the literature of temporal orienting of attention, or temporal ex-
pectation (see Nobre & Rohenkohl, 2014; Nobre & van Ede, 2018,
for reviews), studies have shown performance benefits for targets
occurring at temporally predictable intervals within simple arrays.
Olson and Chun (2001) attempted to understand temporal orient-
ing on the basis of long-term memories by manipulating the inter-
vals used in the sequential structure between visual events. When
this temporal context could be implicitly learned, observers were
able to orient their attention in both time and space. Cravo et al.
(2017) showed that the timing of an event within a natural scene
could be learned to trigger neural signatures of temporal anticipa-
tion and performance benefits. Additionally, work investigating
temporal associations has highlighted how expectations regarding
the timing of stimuli can interact strongly with spatial expectations
(Doherty et al., 2005; Heideman et al., 2018; Nobre & Rohenkohl,
2014; O’Reilly et al., 2008; Rohenkohl et al., 2014).

Taken together, these studies provide a promising foundation
for investigating visual search in temporally extended and noisy
contexts. Building on this work, we have developed a new experi-
mental approach to ask whether and how spatiotemporal predic-
tions about the locations and timings of relevant items can be
extracted within noisy dynamic contexts to guide attention and
improve search performance. Specifically, our aim was to answer
two important questions within the field: (a) Does what we have
learned about regularities in static visual search displays apply to
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dynamic displays? (b) Can we learn and use regularities regarding
the temporal onsets of stimuli appearing in a context of other, tem-
porally unpredictable distractors? Such a finding would require the
ability to learn temporal markers for stimuli that are cannot be
reduced to simple temporal order (e.g., the 3rd stimulus is likely to
appear in this location) or derived by learning the intervals
between individual successive events.
In our “dynamic visual search” task, targets and distractors

unfold over time at various spatial locations, allowing us to test
whether learned regularities continue to guide performance in the
face of intervening distracting events distributed in time and space.
Benefits of performance would require abstraction of predictable
locations and timings of relevant stimuli embedded within the con-
text of other dynamically unfolding, but irrelevant stimuli. This
approach introduces an important step change from previous stud-
ies that have considered the effects of simple associations about
the serial order or timing between successive events. Within an
extended context with unpredictable intervening distractors, learn-
ing simple associations between successive stimuli would be
insufficient for exploiting the spatial and temporal regularities in
our stimuli.
Our experimental approach consists of a visual-search task in

which targets and distractors appear and disappear within a noisy
background over the course of several seconds. Observers are
asked to find multiple instances of a target (vertical line) and to
ignore distractors (tilted lines). On each trial, half of the vertical
targets appear at predictable times and locations, while the other
half of the targets appear completely unpredictably. Across four
experiments, we show superior behavioral performance for identi-
fying the targets that appear at consistent locations and times dur-
ing these dynamic trials (Experiments 1–4). We show that the
effects are robust across different arrangements of spatiotemporal
regularities (Experiment 2). They are not dependent on the imme-
diate repetition of spatiotemporal predictions between trials
(Experiment 3), though they did benefit modestly from repeating
patterns between successive trials (Experiment 4). We believe our
results provide strong and reliable evidence for the ability to utilize
spatiotemporal regularities to guide search in extended dynamic
contexts, such as those present in our daily interactions. While far
from providing a definitive account of how dynamic search hap-
pens, our experimental approach provides a flexible and promising
experimental platform that can be used to investigate how regular-
ities along multiple stimulus dimensions (e.g., identifying features,
locations, time points, response associations) contribute and inter-
act to prioritize, anticipate, and select relevant items and overcome
distraction to guide adaptive behavior.

Experiment 1: Spatiotemporal Regularities in Dynamic
Visual Search Guide Behaviour

Method

Participants

We tested 25 participants (age range 18–30, Mage = 23.4, 11
females). All participants had normal or corrected-to-normal
vision, provided written consent, and were compensated at a rate
of £10 per hour.

We chose our sample size based on the large effect sizes in the
probability and contextual cuing and statistical learning literature
(Chun & Jiang, 1998; Jiang, 2018; Jiang, Swallow, & Rosenbaum,
2013; Li & Theeuwes, 2020) and on preliminary piloting efforts.
For completeness, we ran a posthoc simulation-based power analy-
sis on the results from Experiment 1 using the mixedPower Pack-
age in R (Kumle et al., 2021). Since posthoc procedures can
overestimate true effect sizes, we conducted a simulation using
half of the effect size observed in Experiment 1. We found that a
sample size of 25 participants would lead to a power above 80%
for detecting an effect that is half as large as the one we observed
in the data.

Apparatus

Participants were positioned on a chin rest 100 cm from the
monitor (22-in. Samsung SyncMaster 2233; resolution 1,680 3
1,050 pixels; refresh rate 100 Hz; screen width 47 cm). Eye move-
ments were recorded with the Eyelink-1000-plus desktop mount
(SR Research, Ontario, Canada) at 1,000 Hz. A 9-point calibration
was used with an error threshold of .5° visual angle. Observers
who did not meet this calibration threshold were not included in
the final eye-track analysis, leaving 20 participants for this analy-
sis. Drift correction was applied between blocks. The experimental
script was generated using Psychophysics Toolbox (Brainard,
1997) on MATLAB (Version 2014b, Mathworks, Natick, MA).

Stimuli

The search display consisted of a 2 3 2 array of four different
1/F static noise patches that were generated for each trial. Each
quadrant extended approximately 8.3° (horizontal angle) 3 5.8°
(vertical angle). Forty distractor stimuli (tilted grey bars, 80°–
100°, RGB values [88,88,88]) and eight target stimuli (vertical
grey bars) appeared and disappeared at different times over the
course of approximately 14 second trials. These bars did not move
in their location, but rather faded slowly in and out of view. For all
stimuli, the fade-in time was 2 seconds (gradually becoming visi-
ble over 80 refresh-rate cycles until reaching maximum visibility).
The stimulus then remained at maximum contrast for another .8
seconds and faded out over 2 seconds. For purposes of analysis,
onset times were defined as the first moment from when stimuli
started fading in. This differs from the time at which the stimulus
becomes subjectively detectable to the participant over which we
did not have control. Total stimulus duration was 4.8 seconds.
Each stimulus was �.5° in length and �.08° in width and could
appear anywhere within the boundaries of one of the four quad-
rants as long as it did not overlap with another stimulus. Because
they were presented on 1/F noise, the visibility of items varied
unpredictably; however, any difference in visibility was unrelated
to the status of the item as a predictable or unpredictable target or
distractor.

Procedure

All experimental procedures were reviewed and approved by
the Central University Research Ethics Committee of the Univer-
sity of Oxford. Observers were instructed to find and click on eight
small gray vertical lines which appeared and disappeared over the
course of a trial (Figure 1a). Of the eight target stimuli, four were
predictable. They appeared at the same time relative to the start of
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the trial and in the same quadrant on every trial (Figure 1b). Their
specific location within the quadrant was random (Figure 1c).
Thus, it would be possible to learn that, at time X, a target will
always appear somewhere in quadrant Y. These predictable targets
appeared every 2.5 seconds, with the onset of the first target occur-
ring 1.25 seconds into the trial.

Forty-four other items were presented during each trial. We uni-
formly distributed the onset of these items across the time in the
trial by pseudorandomly choosing a start time when each item
began fading in. This distribution was constrained to present 11 of
the 44 items within each successive 2.5 second window (thus cre-
ating 4 artificial and seamless time bins within the trial). Once the
44 items were assigned a particular starting time, we chose four of
those items to serve as the unpredictable targets. This assignment
was not contingent on the temporal distance between the unpre-
dictable targets or the distance to the predictable targets. This
means that the exact temporal relations between distractors and
unpredictable and predictable targets were not predetermined or
constrained. All stimuli had the same temporal profile, and a trial
ended when the last stimulus had completely faded out of the dis-
play. The spatial locations of the distractors and unpredictable tar-
gets were determined randomly. For each item we randomly chose
a quadrant (1–4) and then within that quadrant randomly chose a
spatial location with the only constraints being that the items
should not overlap or cross the quadrant border. Note that this
means that the number of unpredictable targets in each quadrant
was unpredictable on any given trial. The task is depicted in Figure
1 and a sample trial can be found in https://osf.io/py2w4/ (note the
green dots in the video are for visualizing responses and did not
actually appear in the experiment).

Observers completed four blocks of 40 trials. Trials were termi-
nated when the last stimulus had fully disappeared from the dis-
play. This time varied slightly across trials as the onsets of
unpredictable targets and distractors were chosen randomly. Each
trial contained eight targets (4 predictable and 4 unpredictable).
Overall, there were 8 3 4 3 40 = 1,280 target events per partici-
pant. After each trial, observers received feedback in the form of a
number between 0 and 8 indicating how many targets they had
found. They were able to proceed at their own pace. The experi-
ment lasted approximately 45 minutes.

Behavioral Analysis

Behavioral data were analyzed using R (R Core Team, 2018)
using the approach described in Helbing et al. (2020) and Drasch-
kow and Võ (2017). Differences in analysis procedures between
experiments are highlighted in the corresponding section. Within
each experiment, participants with performance below 2 standard
deviations (SD) from the mean performance of all subjects were
discarded. For the remaining observers, responses with RTs above
or below 3 SD of the mean were discarded. This resulted in an av-
erage loss of fewer than .05% of trials across all four experiments.

For each experiment there were two dependent variables of in-
terest: accuracy and reaction time (RT). Accuracy was defined as
the percentage of total targets found (e.g., accuracy of 80% would
mean an observer found on 80% of the potential targets). RT was
defined as the time between the target onset (i.e., the moment a tar-
get began to fade in) and the time an observer clicked on a target.
These RTs are more complicated than those from a static visual

Figure 1
Trial Schematic for Experiment 1

Note. (a) On each trial, participants searched for eight vertical bars
among distractors—a yellow (gray) circle indicates the first predictable
(unpredictable) target. Targets and distractors appeared and disappeared
over the course of the trial. (b) The time course of a trial is depicted
with the onset of trial events represented as rectangles (colored rectan-
gles represent predictable targets while gray rectangles represent unpre-
dictable targets. (c) Here is an example of a single participant’s target
events across one block of trials. Predictable targets are represented as
filled circles whereas unpredictable targets are represented as unfilled
circles. The time within a trial is represented from yellow (light gray) to
dark red (dark gray). Here it can be seen that predictable targets always
appear at the same time and within the same quadrant (although the
exact location within the quadrant varied). Unpredictable targets had
variable onsets and could appear anywhere. See the online article for
the color version of this figure.
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search task. RT will depend on visibility, and visibility of a spe-
cific target will depend on many factors including the random
noise background beneath and surrounding the target and where
an observer happened to be fixating when the target began to
appear. In addition, cursor position at the time of target detection
will also contribute to the overall RT. While these factors intro-
duce noise into the RT measure, they do not differ systematically
between the conditions. As such, the extra noise within this mea-
sure does not compromise any comparisons of performance
between predictable and unpredictable targets. That is, if predict-
able targets systematically attract attention before unpredictable
targets, this will be clear from the RTs.
Generalized linear mixed-effects models (GLMMs) with a bino-

mial distribution were used to analyze accuracy as a binary
response and linear mixed-effects models (LMMs) were used to
analyze the reaction times for correct trials in all experiments.
Each row of the model contained a single target event. With eight
targets per trial, 40 trials per block, and four blocks per participant
there were 1,280 target events per participant. Because RT analy-
sis was restricted to correct trials, there were fewer trial events in
the LMMs. These analyses were run using the lme4 package (Ver-
sion 1.1–17; Bates et al., 2015). We used mixed-effects models as
they hold multiple benefits over a more traditional approach to
analysis of variance. Importantly for the current study, these
approaches are more reliable in unbalanced designs when different
conditions may have different trial numbers (this becomes critical
Experiments 3 and 4; Baayen et al., 2008). All GLMMs and
LMMs were fitted with the maximum likelihood criterion. For the
GLMMs, where we report regression coefficients b with the z sta-
tistic and use a two-tailed 5% error criterion for significance, the
p-values for the binary accuracy variable are based on asymptotic
Wald tests. For the LMMs, we report b with the t-statistic and
apply a two-tailed criterion corresponding to a 5% error criterion
for significance. The p-values were calculated with Satterthwaite’s
degrees of freedom method using the lmerTest package (Version
3.1-0; Kuznetsova et al., 2017). The ggplot2 package (Version
3.1.0; Wickham, 2009) was used for plotting. In addition, to
benchmark against studies using more traditional analysis
approaches, we conducted repeated-measures analyses of variance
(ANOVAs). These showed equivalent results and can be found in
Tables S1 and S2 in the online supplementary materials as well as
in the analysis script (Boettcher & Shalev, 2021), which can be
found in https://osf.io/8avtq/.
In Experiment 1, there were two main independent variables of

interest: predictability (Predictable vs. Unpredictable) and, within
the levels of predictability, target order (1st, 2nd, 3rd, or 4th). Tar-
get order was centered and entered the model as a continuous pre-
dictor. The critical comparison between predictable and
unpredictable targets was modeled using sum contrasts (with pre-
dictable targets being coded as 1 and unpredictable targets coded
as �1). As such the grand mean of the dependent measure served
as the intercept. For binary responses such as accuracy in the
GLMM approach, the coefficients were represented by logits. We
began each model with a maximal random-effects structure (Barr
et al., 2013) that included intercepts for each participant, as well as
by-participant slopes for the effects of Target Order and Predict-
ability. Full models such as these often fail to converge or lead to
overparameterization (Bates et al., 2015). Therefore, we used a
principal component analysis (PCA) of the random-effects

variance-covariance estimates to identify overparameterization for
each fitted model and removed random slopes that were not sup-
ported by the PCA and did not contribute significantly to the good-
ness of fit in a likelihood ratio (LR) test (Bates et al., 2015). In
Experiment 1, the GLMM’s random-effects structure contained
the subject intercepts as well as by-subject slopes for predictability
and target order (i.e., the full model). The optimal LMM for pre-
dicting participants’ reaction times contained the participant inter-
cepts as well as the participant slopes for target order. Pairwise
tests following significant interactions were further investigated
using the lsmeans package (Lenth, 2016) with Tukey posthoc cor-
rection. Further details regarding the models and model compari-
sons can be found in the analysis script (Boettcher & Shalev,
2021) available in https://osf.io/8avtq/.

Eye Tracking Analysis

Of the 25 participants, 20 had usable eye-tracking data. The raw
eye-position samples for these 20 participants were first converted
to a data matrix using a Matlab script. The raw data matrix con-
tained the X-Y coordinates of gaze position (in pixel units)
throughout the task. Data were then recoded to a single vector of
spatial quadrant (i.e., each sample of X and Y coordinates was
combined and recoded to a single number between 1 and 4, repre-
senting the spatial quadrant at which eyes were fixated at any
given moment). This conversion from screen coordinates to quad-
rants was important for two key reasons. First, the spatial predic-
tions formed in this experiment were on the level of the quadrant
rather than at the specific position of a target (see Figure 1) and
therefore we were primarily interested in how these quadrant-
based predictions affected eye movements. Second, due to the
rather small size of our stimuli, the noise of the background, and
the dynamically changing opacity of the stimuli, it would have
proven quite difficult to define interest areas that accurately
reflected the targets’ visibility. The time series was then converted
to a probability matrix for each quadrant separately and split by
trials to allow statistical analysis.

To quantify spatiotemporal predictions, we compared the mean
probability of searching within a quadrant with a predictable ver-
sus unpredictable target, within a time window of 4.5 seconds,
commencing 500 ms before stimulus onset. The comparison relied
on a permutation test based on 5,000 samples. The resulting distri-
bution for each data point was compared to a critical t-value (p ,
.05) corrected for multiple comparisons based on the “t-max”
method (Blair & Karniski, 1993; Westfall et al., 1993).

Results and Interim Discussion

Performance on the task is shown in Figures 2a–d and shows
that observers were more accurate and faster to respond to targets
that were spatiotemporally predictable. Eye-movements analysis,
shown in Figures 3a–b, reveals that observers were more likely to
fixate the target quadrant earlier for predictable compared to
unpredictable targets.

Accuracy

In Experiment 1, we found that participants were significantly
more likely to identify a predictable compared to an unpredictable
target (Figure 2a; b = .15, SE = .02, z = 6.95, p , .001).
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Additionally, we found a main effect of the target order such that
observers were better at detecting earlier targets (Figure 2b; b =
�.09, SE = .02, z = �4.50, p , .001). However, there was no sig-
nificant interaction between target predictability and target order,
indicating the effect of predictability was present throughout the
course of the trial (b = �.003, SE = .02, z = �.227, p = .82). The
individual participants’ results in each of the four experiments are
plotted in Figure S1 in the online supplementary materials. Specif-
ically, the effect of predictability on accuracy (predictable-
–unpredictable targets is shown across target order. The vast
majority of observers showed higher accuracy for predictable
compared to unpredictable targets across all targets within a trial.

RTs

Participants were significantly faster at finding predictable tar-
gets compared to unpredictable targets (Figure 2c; b = �.052,
SE = .004, t = �12.23, p , .001), as well as, significantly faster
at finding targets appearing early in the trial compared to late tar-
gets (Figure 2d; b = .062, SE = .005, t = 12.87, p , .001). These
two factors showed a small yet significant interaction (b =
�.007, SE = .004, t = �1.96, p = .049). However, posthoc com-
parisons showed significant differences between predictable and
unpredictable targets at each point (zs . 5.8, ps , .001). Again,
individual participants’ effects are included in Figure S1 in the
online supplementary materials.

In Experiment 1, we also recorded eye-movement data to inves-
tigate whether spatiotemporal predictions influenced the pattern of
eye movements. We compared the probability of looking at the
quadrant in which predictable versus unpredictable targets were
presented at each time point locked to the onset of a target (500
ms before onset until 4500 ms after). The results, illustrated in Fig-
ure 3a, shows a higher probability to fixate the target quadrant for
predictable compared to unpredictable targets early in the trial be-
ginning at approximately 1,100 ms and lasting for �1,000 ms. The
difference was driven by the higher probability to fixate at the tar-
get quadrant when searching for a predictable target. A significant
change in fixation probability also occurred at a later time window
(�4,250 ms), this time showing a smaller likelihood of fixating the
quadrant in which a predictable target occurred. The lower rates of
fixation may reflect a faster general spatial disengagement after
quicker detection of predictable versus unpredictable targets or it
may also reflect the inferred lower likelihood for the next target to
occur in the same quadrant. Figure 3b makes clear that this pattern
of fixation probability was present throughout the trial.

Experiment 2: Behavioral Benefits Hold Up Against
Asynchronous Regularities

Experiment 1 shows that observers were more accurate and faster
at finding spatiotemporally predictable compared to unpredictable

Figure 2
Spatiotemporal Regularities in Dynamic Visual Search Guide Behavior

Note. (a) Mean accuracy for predictable and unpredictable targets. (b) Mean accuracy
across the trial. Colors follow the convention in Figure 1. (c) Mean RT for predictable and
unpredictable targets. (d) Mean RT across the trial. Error bars in bar graphs represent the
standard error of the mean, individual participants are represented as light gray lines, and
stars indicate a significant difference with a p-value , .05 in this and all subsequent figures.
See the online article for the color version of this figure.
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targets, and this is true throughout the trial. Experiment 2 was
aimed to reduce effects in Experiment 1 that could be attributed to
the strictly even distribution of predictable targets. We varied the
timing of predictable targets across participants, such that the tim-
ing of onsets was consistent for any given participant, but those tim-
ings were not necessarily evenly distributed across the course of a
trial. If the effects of target predictability are still present, then it is
clear that these results cannot be solely attributed to a rhythmic pat-
tern of attentional allocation.

Method

Participants

Twenty-five participants took part in Experiment 2. One partici-
pant was discarded for low performance—with an average accu-
racy more than 2 SD away from the mean. The remaining 24
participants were between 18 and 30 years old with an average age
of 22.83. The sample contained 20 females. All participants had
normal or corrected-to-normal vision, provided written consent,
and were compensated at a rate of £10 per hour.

Apparatus

Participants completed the experiment in a group testing room
with a capacity of 20 people, although no more than 12 were tested
at once. Participants each sat approximately 60 cm from the moni-
tor (Dell U2312HM Monitor, 1,920 3 1,080 resolution; refresh
rate 60 Hz). The experimental script was again generated using the
Psychophysics Toolbox (Brainard, 1997) on MATLAB (Version
2014b, Mathworks, Natick, MA).

Stimuli

In Experiments 2–4 the timings of the stimuli were changed
slightly such that the speed of the fading was increased slightly.
Specifically, each stimulus faded in over 1.3 seconds (gradually
becoming visible over 80 refresh-rate cycles until reaching maxi-
mum visibility). Then the target stayed on the screen for another
1.3 seconds and faded out over 1.3 seconds. The search display
again consisted of four unique 1/F static noise patches that were
generated for each trial. Each quadrant extended approximately
12.6° (horizontal angle) 3 8.84° (vertical angle). Each stimulus
was �.75° in length and �.13° in width and could appear any-
where within the boundaries of one of the four quadrants as long
as it did not overlap with another stimulus.

Procedure

The procedure was nearly the same as in Experiment 1, but a
few changes were introduced. In Experiment 2, six (instead of
four) sequential time windows were used to determine the onset
time for each stimulus and to ensure the onsets were evenly dis-
tributed throughout the trial. To determine the onset of the predict-
able targets, four of the six time bins were randomly selected for
each observer and the temporal midpoints of these bins were used.
Thus, the appearance of targets was predictable but did not follow
regular intervals. The quadrants and specific locations of the
unpredictable targets were chosen randomly. Unpredictable targets
could appear at any moment throughout the trial and their onsets
were not constrained to occur during the time bins used for the
four predictable targets. The rest of the experimental procedures
were the same as in Experiment 1. The experimental task is
depicted in Figure 4a.

Figure 3
Gaze is Biased Towards Predictable Targets Earlier

Note. (a) The probability of a fixation landing in the “target” quadrant for a 5-second epoch around the “onset” of the target (Time 0). The target dy-
namics are indicated on the x axis and the moment fade in begins (0s), the moment max opacity is reached (2 s), and when the fade out begins (2.8 s)
are labeled as well. Note the shading and color of this line is illustrative and does not actually reflect the color values of the target. Given there are four
quadrants, the chance of being in any one quadrant would be .25. The onset indicates the moment that the targets were no longer completely transparent,
although they were not necessarily visible at this moment and shaded areas around the line represent the 95% confidence interval. The probability of fix-
ating a target quadrant was significantly higher for predictable targets early in the epoch and significantly lower during the later stage of the epoch.
Significant time windows are marked with a solid red (black) line. (b) This pattern repeats throughout the different instances of the target. See the online
article for the color version of this figure.
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Behavioral Analysis

We followed the same analysis procedure as in Experiment 1. In
Experiment 2, the random-effects structure of the GLMM contained
the participant intercepts as well as by-participant slopes for predict-
ability and target order (i.e., the full model). The full model was also
optimal for the LMM in Experiment 2.

Results and Interim Discussion

Results are summarized in Figure 4b–e and showed that the
benefits of predictability were preserved even when the predictable
targets did not appear at evenly spaced moments in time.

Accuracy

As in Experiment 1, there was a main effect of predictability on
the accuracy, with predictable targets being found significantly
more often than unpredictable targets (Figure 4b; b = .19, SE = .02,
z = 8.59, p , .001). We once again found a main effect of target
order on accuracy with higher accuracy for early targets (Figure 4c;
b = �.10, SE = .02, z = �4.52, p , .001), and the interaction was
again not significant (b = �.0005; SE = .01, z = �.045, p = .96).

RTs

In a replication of Experiment 1, an analysis of RTs revealed a
main effect of predictability (b = �.02, SE = .004, t = �4.72, p ,
.001) as well as target order (b = .08, SE = .005, t = 14.35, p ,

.001). More specifically, observers were faster for predictable targets
(Figure 4d) as well as targets appearing early in the trial (Figure 4e).
Again, the interaction was not significant (b = .004, SE = .003, t =
1.53, p = .13).

Experiment 3: Spatiotemporal Guidance Is Robust
Against Single-Trial Interference

In Experiments 1 and 2 we established that regularities in time
and space can help guide dynamic visual search. In both of these
experiments there were two major sources of regularities, either or
both of which may have contributed to performance facilitation:
short-term priming effects from one trial to the next and the build-
up of longer-term memories related to regularities extracted over
the course of the experiment. Although these sources of information
are highly related, we wished to distinguish, to the extent possible,
the relative contributions of single-trial priming and longer-term
learning. To do so, in Experiment 3, we asked whether single-trial
priming effects could fully explain the behavioral benefits of target
predictability. If this were the case, one would expect that the per-
formance benefits in predictable versus unpredictable targets would
be eradicated following a trial that contained no regularities. There-
fore, in Experiment 3 we introduced a new trial type that did not
contain any predictable targets (random trials). If performance ben-
efits are fully reliant on single-trial priming, then these benefits
should disappear on trials immediately following a random trial.

Figure 4
Increased and Faster Detection of Predictable Targets With Asynchronous Regularities

Note. (a) The trial schematic for Experiment 2. Each trial was divided into six time bins, and each observer was randomly assigned to four bins—a
yellow (gray) circle indicates the first predictable (unpredictable) target. (b) Mean accuracy is plotted for predictable and unpredictable targets—individ-
ual participants are represented as light gray lines. (c) Mean accuracy is plotted across the trial split by predictability. Mean RT for predictable and
unpredictable targets (d) averaged over the trial and (e) separately for target across the trial. Asterisks indicate a p-value , .05. See the online article
for the color version of this figure.
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Method

Participants

Twenty-seven observers were tested. One participant had an av-
erage accuracy more than 2 SD lower than the mean, leaving a
final sample size of 26 (age range 18–33, mean age = 24.5, 20
females). All participants had normal or corrected-to-normal
vision, provided written consent, and were compensated at a rate
of £10 per hour. The group of participants in this experiment also
participated in Experiment 4 (see below) within a single session.

Apparatus

Participants completed the experiment in a group testing room
with a capacity of 20 people, although no more than 12 were tested
at once. Participants each sat approximately 50 cm from the moni-
tor (Dell U2312HM Monitor, 1,920 3 1,080 resolution; refresh
rate 60 Hz). The experimental script was again generated using the
Psychophysics Toolbox (Brainard, 1997) on MATLAB (version
2014b, Mathworks, Natick, MA).

Stimuli

The stimuli were the same as in Experiment 2.

Procedure

The group that participated in this experiment also completed a
second experiment (Experiment 4; see below), and the order of
task administration was counterbalanced.
Sixty percent of the trials were standard trials as described in

Experiment 1. However, in 40% of the trials all targets were com-
pletely unpredictable. That is, in these trials, the four predictable tar-
gets appeared at an unpredictable time and quadrant. Trial order was
arranged such that random trials were always followed by standard
trials. This constraint enabled us to test whether the benefit of the
spatiotemporal regularities was completely dependent on intertrial
priming (i.e., the regularities being present in the immediately pre-
ceding trial). The experimental task is depicted in Figure 5a. If
short-term priming effects are necessary, then any advantage for pre-
dictable over unpredictable events should decline after a completely
unpredictable trial (see hypothetical results in Figure 5b).

Behavioral Analysis

In line with our experimental manipulation, we included pre-
dictability, previous trial type, and their interaction as parameters
in the model. By necessity, the first trial in each block and the
completely random trials were not included in the analysis. The
random-effects structure for the GLMM contained the partici-
pants’ intercepts as well as by-participant slopes for predictability
and target order. This model was also optimal for the LMM. Sig-
nificant interactions between predictability and trial type were bro-
ken down by defining difference contrasts to model the two
critical comparisons (repeat vs. Nonrepeat trials for predictable
and unpredictable targets).

Results and Interim Discussion

Results are summarized in Figure 5c–f and showed that the
effects of predictability were again preserved, with better perform-
ance for predictable targets even after fully random trials.

Accuracy

We found a significant effect of predictability on accuracy (Fig-
ure 5c; b = .20, SE = .02, z = 8.252, p , .001) and a significant
effect of target order (Figure 5d; b = �.16, SE = .02, z = �7.45,
p , .001). Observers were more accurate for predictable and early
targets. We once again did not find a significant interaction
between predictability and target order (b = .006, SE = .01, z =
.43, p = .67). Moreover, we found no effect of the previous trial
type (b = .02, SE = .02, z = 1.34, p = .18), and the previous trial
type did not interact significantly with predictability (b = .02, SE =
.02, z = 1.04, p = .30), indicating that there was no significant dim-
inution in the predictability effect immediately following a fully
random trial, in which all targets were unpredictable.

RTs

The equivalent analysis for RTs again showed faster responses for
predictable targets (Figure 5e: b = �.015, SE = .006, t = �2.26, p =
.03) and faster responses for early targets (Figure 5f: b = .11, SE =
.007, t = 15.51, p, .001), yet no interaction (b = .006, SE = .003, t =
1.61, p = .11). There was also no effect of the previous trial type when
considering RTs (b = �.005, SE = .004, t = �1.11, p = .27), and the
previous trial type did not interact significantly with the predictability
effect (b =.007, SE = .004, t = 1.61, p = .11).

Experiment 4: Trial-Wise Priming Contributes to
Behavioral Benefits

Complementing Experiment 3, in Experiment 4, we sought to
assess the extent to which performance could also benefit from
short-term single-trial priming effects. In Experiment 3, we found
no significant diminution of the predictability effect in trials pre-
ceded by a random versus standard trial. Behavioral facilitation by
spatiotemporal regularities was therefore resistant to interference
of previous trials with a novel spatiotemporal pattern of targets.
Nevertheless, it remains possible that short-term, single-trial pri-
ming effects may still also contribute to behavioral guidance. Spe-
cifically, in Experiment 4 we tested whether a single repetition of
spatiotemporal target dynamics was sufficient to facilitate per-
formance. Here we again introduced a new trial type. In repeat tri-
als, all targets (including those that are overall unpredictable over
the course of the experiment) appeared at the same time and quad-
rant as in the previous trial. If observers can benefit from a single
repetition of spatiotemporal target information, we should find
benefits for the normally unpredictable targets on repeat trials ver-
sus standard trials (see hypothetical results in Figure 6b).

Method

Participants

In this experiment we tested the same group as in Experiment 3.

Apparatus

Again, participants completed the experiment in a group testing
room with a capacity of 20 people, although no more than 12 were
tested at once. Participants each sat approximately 50 cm from the
monitor (Dell U2312HM Monitor, 1,920 3 1,080 resolution;
refresh rate 60 Hz). The experimental script was again generated
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using the Psychophysics Toolbox (Brainard, 1997) on MATLAB
(version 2014b, Mathworks, Natick, MA).

Stimuli

The stimuli were the same as in Experiments 2 and 3.

Procedure

We tested the participants in the same room and during the
same session as in Experiment 3. The order of the two tasks (3 and
4) was counterbalanced.

In this experiment only 60% of the trials were standard “nonrep-
eat trials” (as described in Experiment 1). The remaining 40% of
the trials were “repeat trials,” in which all of the target timings and
quadrants from the previous trial repeated. That is, all eight targets
had the same spatiotemporal dynamics as the previous trial.
Although this was always the case for predictable targets, in repeat
trials, what had been the four unpredictable targets on the previous
trial now repeated their timing and quadrant from that trial. As
such, performance on these one-time repetition targets would
reveal if a single repetition of spatiotemporal information was

Figure 5
Spatiotemporal Guidance Is Held in Long-Term Memory

Note. (a) The trial schematic for Experiment 3. In 40% of trials, the locations and timings of all targets were
completely unpredictable. (b) Hypothetical results are shown for two scenarios: the predictability effect is de-
pendent on single-trial priming (left) or the predictability effect is resistant to interference (right). (c) Mean ac-
curacy is plotted for predictable and unpredictable targets separated by the previous trial type—individual
participants are represented as light gray lines. Participant means for the average accuracy in fully random tri-
als are also shown. (d) Accuracy in standard trials is plotted across the trial. (e) Mean RTs are plotted for pre-
dictable and unpredictable targets when the target was preceded by a standard trial, a random trial, as well as
for when the trial itself was fully random. (f) The reaction times in standard trials across the entire trial.
Asterisks indicate a p-value , .05. See the online article for the color version of this figure.
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enough to trigger a behavioral benefit. It is important to point out
that although the repeated trials maintained the exact timing and
quadrants from the previous trial, the exact location within the
quadrant was random. Trial order was arranged such that repeat
trials were always followed by standard trials. This ensured any
effects were attributable to priming across single trials only. The
experimental task outline is depicted in Figure 6a.

Behavioral Analysis

In Experiment 4, trial type and its interaction with predictability
were included as predictors in the model. The random-effects
structure for the GLMM contained the participants’ intercepts as

well as by-participant slopes for predictability and target order.
This model was also optimal for the LMM.

Results and Interim Discussion

Results are shown in Figures 6c–f and showed that even a single
repetition could improve accuracy performance though we did not
find an effect of repetition on RT.

Accuracy

We once again found significantly higher accuracy for predictable
compared to unpredictable targets (Figure 6c; b = .20, SE = .01, z =

Figure 6
Trial-Wise Priming Contributes to Behavioral Benefits

Note. (a) Depiction of a trial schematic for Experiment 4. Forty percent of trials were repeated such that the
timings and quadrants of the unpredictable targets were the same as in the previous trial. (b) Depicted are hypo-
thetical results supporting single-trial priming effects (left) and without evidence for single-trial priming effects
(right). It is of note that if we find evidence to support the notion of single trial priming this should manifest in
better performance in the repeat vs. nonrepeat trials. (c) Accuracy measures for predictable targets (in all trials)
and the unpredictable targets in the nonrepeat vs. repeat trials. (d) Here we see the effect of repeating a single trial
over the course of a trial; (e) compares reaction times for predictable targets, nonrepeat trials, and repeat trials. In
(f) we see this effect across a trial. Asterisks indicate a p-value , .05. See the online article for the color version
of this figure.
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10.96, p , .001) and a significant effect of target order, with early
targets being detected more frequently (Figure 6d), (b = �.13, SE =
.02, z = �8.25, p , .001). There was no interaction between pre-
dictability and target order (b = .006, SE = .01, z = .60, p = .55).
Although, we did not find a significant effect of the trial repetition
(b = �.004, SE = .01, z = �.33, p = .74), this factor interacted sig-
nificantly with predictability (b = .03, SE = .01, z = 2.95, p = .003).
Planned comparisons revealed that the “unpredictable” targets were
found significantly more often in the repeat trials compared to the
nonrepeat, standard trials (b = .08, SE = .03, z = 2.44, p = .01.

RTs

We found a main effect of predictability such that predictable
targets were found faster than unpredictable targets (Figure 6e;
b = �.03, SE = .006, t = -5.37, p , .001). Additionally, early tar-
gets were found faster (Figure 6f; b = .11, SE = .006, t = 18.46, p,
.001). A significant interaction (b = .02, SE = .002, t = 7.57, p ,
.001) indicated a steeper slope of improvement in reaction times for
predictable, compared to unpredictable targets—although, numeri-
cally, predictable targets were found faster than unpredictable tar-
gets throughout the trial. We found no effect of trial repetition on
RTs (b = .004, SE = .003, t = 1.24, p = .21), and trial repetition did
not interact significantly with the predictability effect (b = �.0005;
SE = .003, t = �.16, p = .87).

General Discussion

In four experiments, participants searched for targets among dis-
tractors in a novel dynamic visual-search task. Participants were
more accurate and faster at detecting targets when they were pre-
dictable in their temporal onset and quadrant location. Experiment
1 established the basic effect in behavioral and eye-movement
data. Experiment 2 showed that the effects were due to predictabil-
ity of the specific temporal sequence of targets rather than just
their temporal order or a rhythmic pattern. In Experiments 3 and 4
we showed that these behavioral benefits are likely attributable to
the guidance of attention from memories at more than one time
scale. In Experiment 3 we found that the predictability effect per-
sists even after a completely random trial. This suggests that these
benefits cannot be completely explained by single-trial priming
(STM) and that a longer-term memory must be involved in order
to maintain the regularities over several trials without any deficits.
Even so, in Experiment 4, we found that single-trial priming
effects do contribute to the overall effect since a single repeated
trial was enough to trigger benefits in accuracy. Most likely, STM
contributes to the learning of regularities, which, once learned, are
held in a more robust longer-term store.
Models of visual search have evolved in their consideration of

how attention may be allocated during search. Treisman’s Feature
Integration Theory (Treisman & Gelade, 1980) was one of the first
models to consider a serial deployment of attention over time.
Eventually, models began to consider what information could be
used to guide attention in a static scene (Egeth et al., 1984; Wolfe,
1994; Wolfe et al., 1989). Modern models pose that bottom-up sali-
ency is integrate with information from the attentional template (a
priori information that can guide search) in a continuously evolving
priority map (Wolfe, 2021). However, these models have thus far
not considered how temporal regularities within our environment

may be additionally incorporated into attentional templates. Learn-
ing temporal predictions in dynamic contexts is particularly chal-
lenging since it involves the abstraction of temporal regularities
from local temporal associations within the flow of information.
Our results convincingly show that such the temporal regularities
are learned and incorporated into dynamic priority maps that help
guide attention, at least when combined with spatial regularities.
Future models of visual search should therefore include considera-
tion of the temporal dimension as a critical source of information to
our attention system. Future experimentation will help specify the
conditions under which temporal regularities support the guidance
of attention and discover the psychological and neural mechanisms
involved.

In the current task, each trial spanned several seconds and
required multiple responses, allowing us to monitor the guidance
of spatial selection over time. In designing the task, special consid-
eration was given to the dynamics of the displays to minimize ex-
ogenous factors. Namely, targets appeared and disappeared slowly
from the display, such that attention was not captured by the sud-
den onset of any event, but rather revealed the guidance by top-
down predictive signals that changed dynamically over time.
Nevertheless, interestingly, we consistently found a main effect of
target order on our performance metrics. Performance was lowest
when searching for the third target and improved again at the end.
This U-shaped curve may reflect a combination of multiple factors
linked to the dynamic and extended nature of the task. For exam-
ple, performance may have benefited from slightly fewer compet-
ing distractors during the final time window in which no new
distractors could fade in. Manipulating the frequency, timing and
spatial distribution of distractors within the dynamic displays
should prove an interesting avenue for future experimental
research into how spatial-temporal predictions help overcome
competition. In addition, the extended nature of the trial may also
reveal natural intrinsic fluctuations in attention or arousal over
time (Shalev, Bauer, et al., 2019). Additional recordings of brain
and physiological activity (e.g., pupil diameter and blink rates)
may provide traction into this interesting set of questions.

In the current work we have shown that spatiotemporal informa-
tion about a target can be used to guide behavior. This was
reflected not only in performance measures such as accuracy and
reaction times, but also in eye movements being proactively
guided to predictable compared to unpredictable targets. The nec-
essary and sufficient conditions for learning and utilizing these
spatial temporal regularities are not fully addressed by our current
experimental design. For example, in future studies we intend to
probe whether the effects are dependent on responding overtly to
targets (action). Attention and action are tightly coupled (Heuer et
al., 2020; Olivers & Roelfsema, 2020; van Ede, 2020); and it
remains unclear whether these regularities can be learned or uti-
lized in their absence (Shalev, Nobre, et al., 2019). Ultimately,
this experimental framework could be applied to understand the
contributions of and interactions among regularities along various
stimulus dimensions, including their action associations. For now,
the necessary building blocks for the effects remain an important
topic for investigation.

Moreover, whereas we demonstrated clear and consistent effects
on accuracy and response times, we did not explore the full gamut
of potential performance benefits. it remains unclear, for example,
whether spatiotemporal predictions can shift observers’ criterion
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in dynamic visual search. We relied on targets that were readily
distinguished from the distractors (vertical lines vs. lines tilted
between 80° and 100°). We do not expect that observers would
have often misreported distractors, but we did not record these
possible errors. One could imagine that the increase in perform-
ance related to the predictable targets is in part related to dynamic
shifts in criterion over the course of the trial. If this were the case,
in addition to the high accuracy related to finding more predictable
targets, we would also expect higher false alarms at the moments
near the expect target onset. It is a limitation of the current work
that we cannot speak to shifts in criterion directly, but future stud-
ies can examine these systematically, including by varying tar-
get–distractor similarity.
In Experiments 3 and 4 we arranged “random” (Experiment 3)

and “repeat” (Experiment 4) trials such that they were always pre-
ceded by a “standard” trial. This was considered an important con-
trol for specifically examining short-term influences from one
individual trial on the next. In Experiment 3, we were interested in
whether an interruption of regularities in a single random trial
would erode benefits in performance to predictable targets in sub-
sequent trials. We did not find such an effect, suggesting that be-
havioral benefits were not solely attributable to single trial priming
effects. It remains unclear from the current work how several ran-
dom trials in a row may diminish the effects of predictions in sub-
sequent trials. In Experiment 4 we posed a complementary
question: whether single-trial priming effects were sufficient to
elicit benefits. We found that a single repetition was indeed suffi-
cient to confer better accuracy for finding previously unpredictable
targets. No benefit occurred for in reaction times, and we believe
this may point to an interesting functional dissociation between ac-
curacy and speed, which should be examined in future studies.
Compared with many studies considering how memory guides

spatial attention in static displays (Chun & Jiang, 1998; Geng &
Behrmann, 2002; Hutchinson & Turk-Browne, 2012; Li &
Theeuwes, 2020; Summerfield et al., 2006), there has been less
work on the spatial guidance of attention in environments that
unfold over time. Cravo and colleagues (2017) demonstrated that
observers are able to utilize temporal intervals associated with spe-
cific contexts to guide attention—although in a task that utilized
static displays with sudden target onsets. Muhl-Richardson,
Cornes, et al. (2018) and Muhl-Richardson, Godwin, et al. (2018)
showed that observers prioritized distractors in a dynamically
changing display when these distractors had a high probability of
soon becoming targets. Other studies showed how repeating
sequences can inform attentional guidance (Boettcher et al., 2020;
Heideman et al., 2018; Li & Theeuwes, 2020; Nobre & O’Reilly,
2004; O’Reilly et al., 2008; Zhao et al., 2013). Here we demon-
strate for the first time that memory-based spatiotemporal predic-
tions can drive behavior in an extended dynamic task when facing
multiple competing signals (i.e., distractors and other targets).
Importantly, we find a behavioral benefit of predictions when the
spatiotemporal relationship was a high-level representation that
was abstracted beyond simple temporal associations between suc-
cessive pairs of stimuli.
We demonstrated that spatial and temporal guidance of attention

can work together to benefit performance within extended
dynamic contexts. Our results extend findings showing strong
interactions between spatially and temporally informative cues in
guiding attention (Doherty et al., 2005; Heideman et al., 2018;

Nobre & Rohenkohl, 2014; Rohenkohl et al., 2014) by showing
that spatiotemporal predictions go beyond simple associations
between two discrete stimuli. In our task, spatiotemporal predic-
tions were driven by implicit task regularities. These in turn led to
proactive allocation of spatial attention as demonstrated through
eye movements: observers fixated the relevant quadrant earlier
when targets were predictable and ahead of their manual
responses. The current work provides further evidence for tempo-
ral orienting of attention, here in a dynamic context even with a
certain amount of spatial uncertainty. Therefore, we have repli-
cated this previously found synergistic relationship between tem-
poral and spatial attention. Within our task we did not seek to
fractionate the individual contributions of spatial and temporal
predictions within this dynamic search context since both types of
regularities covaried in our task. Future studies may wish to sepa-
rate the individual contributions of these mechanisms as well as
explore the potential interactions between these predictive sources.

In the current work, we have introduced a new perspective for
considering spatial attention in visual search by including time as
an informative dimension. Through this manipulation, we have
found that the spatial distribution of attention is allocated flexibly
on the basis of temporal predictions. Our task can be extended in
several directions to explore whether additional sources of guid-
ance also evolve with time. For instance, it may be interesting to
consider whether various features can be prioritized dynamically;
for example, whether knowing that a colored target is likely to
emerge at a predictable time, without knowing where, can also
benefit performance. Additionally, the new experimental frame-
work can be used to characterize the precision of temporal and
spatial predictions, independently, by presenting targets across a
range of moments in time or locations in space in order to manipu-
late degrees of temporal and spatial competition.

In designing our stimulus arrays, we made some particular
choices that may have contributed to the pattern and strength of
our effects. Our stimulus displays contained four spatially distinct
quadrants. The distinctiveness of the quadrants may have made it
easier for observers to associate time and space. In past work it
has been shown that observers are able to learn regularities that
exist on a quadrant level (i.e., highly probable target quadrant)
even when the quadrants were not visually obvious from the dis-
play (Jiang, 2018; Jiang, Swallow, & Rosenbaum, 2013; Jiang,
Swallow, Rosenbaum, & Herzig, 2013). This suggests distinctive-
ness of the quadrants is not strictly necessary to learn these regu-
larities, however, this remains untested and will be addressed by
future work. The stimuli appeared and disappeared from the array
gradually. This was done deliberately, to minimizes exogenous
attraction of attention. While in the current investigation this was
necessary in order to reduce the influence of bottom-up capture,
this can be directly manipulated in the future.

We demonstrate that spatiotemporal regularities guide attention
to the right place at the right time in complex visual search tasks.
Memories from multiple timescales can support attentional guid-
ance in these more naturalistic settings. Our simple—yet powerful
—experimental framework promises to further the investigation
into the dynamic factors guiding attention. Moving forward, time
should be considered not only as a crucial dimension for under-
standing natural behavior, but also as powerful axes over which
predictions may be formed.
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